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1. Introduction

Since 1967, the definition of the Système International (SI) 
unit of time, the second, has been based on the hyperfine 
energy splitting of the ground state of 133Cs atoms [1]. The 
initial definition, adopted at the 13th Conférence Générale des 
Poids et Mesures (CGPM) states that:

The second is the duration of 9192 631 770 periods of 
the radiation corresponding to the transition between 
the two hyperfine levels of the ground state of the ce-
sium 133 atom.

Since then, the accuracy of best realisations of this definition, 
that is to say the uncertainty with which the unit is realised, 

has improved by one order of magnitude every decade, from 
the first cesium beam clocks to the modern cold atom foun-
tain clocks. To take into account the evolution of these cesium 
standards, now reaching a control of systematic effects down 
to a few part in 10−16, the definition of the SI second was 
amended in 1997:

This definition refers to a caesium atom at rest at a 
temper ature of 0 K.

The 26th CGPM in 2018 introduced a new wording of the 
definition of the time unit, in order to make it consistent with 
the newly adopted definitions of the other base units:

The second, symbol s, is the SI unit of time. It is de-
fined by taking the fixed numerical value of the caesium 
frequency ∆νCs, the unperturbed ground-state hyper-
fine transition frequency of the caesium 133 atom, to 
be 9192 631 770 when expressed in the unit Hz, which 
is equal to s−1.
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The SI is thus formally defined by fixing fundamental con-
stants, among which ∆νCs:

The International System of Units, the SI, is the system 
of units in which the unperturbed ground state hyperfine 
transition frequency of the caesium 133 atom ∆νCs is 
9192 631 770 Hz […]

In this major update of the SI, the definition of the second is 
therefore left unchanged. However, since the late 2000s, clocks 
based on optical transitions in ions or neutral atoms have been 
developed with a control of systematic effects better than the 
accuracy of the best Cs standards [2], raising the question of 
a redefinition of the SI second [3–6]. A roadmap crafted by 
the comité consultatif temps fréquence (CCTF) of the Bureau 
International des Poids et Mesures (BIPM) and summarized in 
[7], fixes milestones that the optical clocks must reach in order 
to make such a redefinition possible. Beyond the realisation 
of optical clocks with a low uncertainty, the roadmap empha-
sizes on the necessity to connect the new unit of time to the 
current SI second, to show the reproducibility of the optical 
clocks across different laboratories, and to measure frequency 
ratios between different optical transitions with an uncertainty 
matching the uncertainty of the best clocks. The progresses in 
completing these milestones let us envision a possible redefi-
nition of the SI second as early as 2026. However, while the 
choice of cesium in 1967 was univocal1, current optical clocks 
are being developed with various atomic species, and various 
technologies. This diversity of high performance optical clocks 
is a wealth for the community, because it fosters applications 
of precise metrology in the field of fundamental physics. But 
it also means that none of these optical transitions currently 
stands out as an obvious choice for a new definition of the SI 
second, and the fast evolution of the field of optical frequency 
metrology makes picking a single atomic species uncertain. 
Facing this situation, it seems unavoidable that a new defini-
tion of the SI second should not designate a specific atomic 
transition as the new standard, but rather define the frequency 
unit from a weighted mix of the best realised optical trans-
itions. This article proposes such a definition for a unit of time 
that can accommodate with the multiplicity of frequency stan-
dards and their evolution with time.

2. Current status of the Cs atom in the SI

Cesium is still the unique primary frequency standard (PFS) 
with which the SI second can be realised. However, over the 
past decade, the frequency ratios between cesium clocks and 
various other microwave or optical clocks have been pre-
cisely measured, with uncertainties limited by the best cesium 
fountains in the low 10−16. From these published measure-
ments, it becomes practically feasible to realise the SI second 
with a very low uncertainty with other atomic species. This 

possibility is enacted by the Comité International des Poids 
et Mesures (CIPM), via the publication of recommended fre-
quencies for so-called secondary representations of the SI 
second (SRS). The current system of primary and secondary 
representations of the SI seconds is reproduced in table 1.

More recently, several frequency ratios that do not involve 
the cesium clock transition have also been measured, some of 
them with a relative uncertainty lower than the accuracy of the 
best cesium clocks (see figure 1). To incorporate these meas-
urements in the recommended values of the SRS, an adjust-
ment procedure using a least square algorithm or graph theory 
[8, 9] is now implemented by the CCTF. While apparently pre-
serving the central role of cesium as the primary standard—
the recommended frequencies of the SRS are given in the SI 
unit Hz—these procedures actually make a step towards a 
Cs-free, decentralized, definition of the frequency unit. For 
instance, computing the ratio between the recommended fre-
quencies, in Hz, of the strontium and mercury optical clock 
transitions gives an estimate of the real value of this ratio with 
an uncertainty lower than the accuracy of the cesium fountain 
clocks. From this point of view, the outcome of the adjustment 
procedures is not a set of frequencies in Hz, but more funda-
mentally a set of best estimates for the ratios ρij  between the 
frequencies νi of the connected atomic species:

ρij =
νi

νj
with ρij = ρikρkj. (1)

The transitivity condition stated at the end of equation (1) is 
true, by definition, for the actual frequency ratios. However, 
a set of physical measurements of these ratios may fail to 
verify the transitivity relation because of systematic and sta-
tistical uncertainty in the measurements. To circumvent this 
issue, and to ensure that the best estimates for frequency 
ratios are transitive, the adjustment procedures of [8, 9] set the 
transitivity relations as fixed constraints. In this picture, the 
numbers νSRS

i  listed in the first column of table 1 can be for-
mally reformulated as the transitive rational frequency ratio 
matrix in the (133Cs, 87Rb, 87Sr, 88Sr+ , 171Yb, 171Yb+ , 171Yb+ , 
199Hg+ , 27Al+ , 199Hg) basis:

ρSRS
ij =

νSRS
i

νSRS
j

,

 

(2)

and the 133Cs ground state hfs is 9192 631 770 Hz. 
This matrix representation explicitly highlights that the 

recommendations for the SRS are in essence independent of 
the Cs frequency, the latter being factorized by the instantia-
tion of the definition of the SI second. The uncertainty matrix 
on the recommended frequency ratios would then read

δρSRS
ij = ρSRS

ij

√
u2

i + u2
j , (3)

where ui is the relative uncertainty of the realisation of the 
clock transition i. In this equation, we assumed that the uncer-
tainty on the frequency ratios is limited by the systematic 
uncertainty of the clocks, and therefore is not improved by 
accumulating frequency ratio measurements or by exploiting 

1 Retrospectively, the choice of cesium turned out to be the correct one as, 
in 2019, Cs is still one the most appropriate species for a low uncertainty 
microwave clock, equally matched with rubidium.
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the redundancy between the coefficients of the frequency 
ratio matrix2. While equation  (2) is equivalent to the list of 
frequencies of table 1, the uncertainty matrix of equation (3), 
although it is not currently published along with the adjust-
ment of SRS frequencies chosen by the CCTF, contains more 
information than the second column of table 1, because it also 
incorporates the uncertainty of frequency ratios not including 
the Cs clock transitions.

Because it does not directly focus on a single atomic trans-
ition, the matrix representation of the recommendations pub-
lished by the CIPM, given by equations  (2) and (3), can be 
used to construct a new definition of the SI second that can be 
realised not only with a clock based on a specific, arbitrarily 
chosen transition, but rather by any high performance optical 
frequency standard. For this, we just have to reformulate the 
anchor to the Cs stated in the second line of equation (2). This 
is the aim for the next sections.

3. Notations

We note νi the physical frequency of the clock transition i. 
This is a quantity with a physical dimension, and as such, 
it is not experimentally accessible without a prior defini-
tion of the frequency unit. On the other hand, the frequency 
ratios ρij  between these frequencies, as defined by equa-
tion  (1) can be experimentally measured by comparing 
clocks. We note ρm

ij  the outcomes of such measurements. 
They generally do not form a complete frequency ratio 
matrix as pairs of clock trans itions may have never been 
directly compared, nor do they satisfy the transitivity rela-
tion, as they typically deviate from the genuine frequency 
ratios by the uncertainty of the clocks. However, we shall 
assume that they are connected, i.e. there are no subsets 
of the frequency ratio measurements that do not share at 
least one clock trans ition. This requirement is necessary 
in order to be able to compute, from the measurements, a 

most likely frequency ratio matrix that is both complete 
and transitive [8, 9]. We note ρ̄ij  such a frequency ratio 
matrix, of which the matrix ρSRS

ij  is an example.
As stated above, ui is the uncertainty of the clocks based on 

the transition i. To ease the reading, we sometimes call ui the 
uncertainty of transition i.

4. Requirements for a unit

We consider a frequency unit constructed from the frequen-
cies of various atomic clock transitions. Such a frequency unit 
ν  is mathematically defined by a function F of n individual 
frequencies νi:

ν = F(ν1, . . . , νn). (4)

Table 1. Table of the frequencies of the Cs primary and secondary representation of the SI second, adopted at the 2017 CIPM under the 
advise of the CCTF. Reproduced from [7]. © 2018 BIPM & IOP Publishing Ltd. CC BY 3.0.

Frequency/Hz Fractional uncertainty Transition

9192 631 770 Exact 133Cs ground state hfs
6834 682 610.904 3126 6 × 10−16 87Rb ground state hfs

429 228 004 229 873.0 4 × 10−16 87Sr 5s2 1S0–5s5p 3P0

444 779 044 095 486.5 1.5 × 10−15 88Sr+ 5s 2S1/2–4d 2D5/2

518 295 836 590 863.6 5 × 10−16 171Yb 6s2 1S0–6s6p 3P0

642 121 496 772 645.0 6 × 10−16 171Yb+2S1/2–2F7/2

688 358 979 309 308.3 6 × 10−16 171Yb+ 6s 2S1/2–5d 2D3/2

1064 721 609 899 145.3 1.9 × 10−15 199Hg+ 5d106s 2S1/2–5d96s2 2D5/2

1121 015 393 207 857.3 1.9 × 10−15 27Al+ 3s2 1S0–3s3p 3P0

1128 575 290 808 154.4 5 × 10−16 199Hg 6s2 1S0–6s6p 3P0

Figure 1. Measured frequency ratios. Green labels: secondary 
representations of the second (SRS). Blue: other optical transitions; 
black lines: absolute frequency measurements against Cs; red 
lines: optical-to-optical frequency ratios; orange lines: optical-to-
microwave frequency ratios against the Rb SRS. Adapted from [7]. 
© 2018 BIPM & IOP Publishing Ltd. CC BY 3.0.

2 In practice, the uncertainty given by equation (3) may not be met. Exploit-
ing statistical independence in the measurement of frequency ratios can 
lead to a lower uncertainty. On the other hand, if the frequency ratio ρij  was 
not directly measured but deduced from the product ρikρkj , the uncertainty 
may be larger than the uncertainty given by equation (3). Such cases will be 
considered later in this paper.
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For instance, the current SI frequency unit is defined by

νSI ≡ 1 Hz =
νCs

NSI
with NSI = 9192 631 770. (5)

Such a definition must fulfill two sine qua non requirements. 
The frequency unit must be:

 •  realisable in the form of a physical signal, i.e. there must 
exist a practical device, accessible to various laboratories, 
whose output is a realisation of the frequency unit with an 
inaccuracy as low as possible.

 •  backward compatible with the previous definitions of 
the unit, i.e. the relative frequency difference between a 
new definition of the unit and the previous definition must 
be lower than the accuracy of the best realisation at the 
moment of the change of definition.

The current definition of the SI second based on Cs fulfills 
these requirements: it is realisable with a cold atom atomic 
fountain clock, and the constant NSI was chosen so that the 
atomic second defined with Cs would match the previous defi-
nition of the SI second based on the ephemeris time [10].

Beyond these requirements, additional properties can be 
desirable for a frequency unit. The frequency unit should be:

 •  optimal: no other unit can be better realised than the 
chosen frequency unit.

 •  universal: a clock based on any transition i should be suf-
ficient to realise the frequency unit within the uncertainty 
of the clock.

 •  representative: the lower the uncertainty of a transition, 
the larger the weight of the frequency of this transition in 
the definition of the unit.

 •  evolutive: the definition evolves with the uncertainties of 
the various clock transitions.

With the advent of various optical clocks with uncertainties 
smaller than the accuracy of the cesium fountain clocks, the 
current definition of the SI second does not fulfill anymore 
these properties.

5. Construction of a weighted frequency unit

We now propose to construct a new frequency unit suitable for 
optical transitions. For this, we write a general form for the 
definition of the unit of frequency as the arithmetic mean of 
the frequencies of different atomic clock transitions belonging 
to the set C:

ν =
∑
i∈C

aiνi. (6)

The question then arises of choosing the best values for the 
coefficients ai, both to ensure that the unit can be realised with 
the lowest possible uncertainty, and to allow for these coef-
ficients to evolve with time as the uncertainty of the various 
transitions composing the unit improves, without introducing 
a drift in the unit. Let us first express that transitions should 
contribute with different weights wi, based on their uncer-
tainty. A transition with a lower uncertainty will have a larger 

weight than a transition with a higher uncertainty. Taking into 
account that each transition has its own nominal frequency, 
this yields the relation between the ai coefficients:

aiρij/aj = wi/wj (7)

for all pairs (i, j), which is a relation symmetric with the trans-
formation i ↔ j  given that ρij = 1/ρji. It is straightforward to 
check that the ai coefficients defined as

ai =
1
N

wi

∏
k∈C

ρwk
ki , (8)

where N is a numerical constant, satisfy equation  (7), pro-
vided the weights wi are normalised:

∑
k∈C

wk = 1. (9)

Then, the frequency unit can be rewritten as

ν =
∑
i∈C

aiνi =
∑
i∈C

1
N

wi

∏
k∈C

ρwk
ki νi =

1
N

∑
i∈C

wi

∏
k∈C

νwk
k =

1
N

∏
k∈C

νwk
k .

 (10)
The frequency unit is thus the weighted geometric mean of 
the frequencies of the clock transitions. This property fits 
with the fact that, in essence, the ratios between frequencies 
are quantities more representative than the frequencies them-
selves, which are conventional and unit-dependent. This fact 
is also used in the fitting procedure of [9], through the use of 
the logarithms of frequency ratios.

6. Definition of the frequency unit

Using the results of the previous section, we can now formally 
define a unit of frequency as the weighted geometric mean of 
the frequencies of a set C of clock transitions:

ν =
1
N

∏
i∈C

νwi
i , (11)

where νi are the individual transition frequencies, N is a 
numerical constant, and wi the normalized weight of the clock 
transition i. The normalization of the weights ensures that ν  
has the dimension of a frequency. The current Cs based SI unit 
of frequency, as expressed by equation (5), is a special case of 
equation (11) with N = NSI  and wi = δi,Cs.

The frequency unit (11) is realisable with a single clock 
based on any transition i, and thus universal, through the use 
of the frequency ratio matrix:

ν|i =
νi

Ni
with Ni = N

∏
k∈C

ρ̄wk
ik , (12)

where ρ̄  is a measurement-based estimate of ρ  satisfying the 
transitivity property, for instance the matrix ρSRS constructed 
from the recommended frequency of the SRS already pub-
lished by the CIPM. Ni is the factor linking the frequency of 
the clock transition i to the frequency unit: it can be viewed as 
the recommended frequency for the clock transition i. The Nk 
numbers satisfy the relation:

Metrologia 56 (2019) 055009
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Ni

Nj
= ρ̄ij. (13)

Then, the relative uncertainty on the realisation of the fre-
quency unit with a clock based on transition i is given by

δν

ν

∣∣∣∣
i
=

√(
δNi

Ni

)2

+ u2
i . (14)

This uncertainty is composed of the uncertainty ui of the clock 
used to realise the unit, but also of the uncertainty on the inde-
pendently determined quantity Ni. The frequency unit is thus 
non-optimal as soon as the definition incorporates a transition 
beside the best transition of the moment.

7. Trade-off optimality versus universality

The quantity Ni required to realise the unit with a clock based 
on transition i can be computed from a compilation of world-
wide frequency ratio measurements. Its uncertainty δNi thus 
depends on which ratios are available, on the uncertainty of 
the clocks that were used to measure them, but also on the 
correlations between these ratios, that can occur if system-
atic effects shift the frequency of different clocks in the same 
way, or if some ratios were measured with the same clocks, 
possibly at the same time. A best estimate of Ni and its uncer-
tainty δNi can be extracted from a least-squares fit that takes 
as input the set of measured frequency ratios and their cor-
relations, as explained in [8]. The appendix A of this paper 
explicitly details this calculation.

In this section, we consider the relative uncertainty δNi/Ni 
for a few ideal cases, in order to theoretically quantify the 
deviation from optimality of the unit proposed in the previous 
section. We show that an appropriate choice of weighs wi 
leads to a realisation of the unit with a limited sub-optimality, 
by both accurate and less accurate clocks, resulting in a uni-
versal unit without significantly compromising its optimality.

7.1. n clock transitions with identical uncertainties

We first assume the unit is composed of n clock transitions, 
whose frequencies are realised by clocks with the same rela-
tive uncertainty u, and for which all frequency ratios have been 
evaluated with a relative uncertainty 

√
2u. The weights of the 

clock transitions in the unit should therefore be identical, i.e. 
wi  =  1/n. In this case, the deviation of the unit from optimality, 
characterized by δNi/Ni, is at most the clock uncertainty u if the 
frequency ratio measurements are fully correlated, or goes to 
zero like 1/

√
n for n large if the frequency ratio measurements 

are uncorrelated (see appendix A). In practice, a set of mea-
sured frequency ratios would make δNi/Ni lay between these 
two bounds, such that the relative uncertainty on the realisation 
of the unit for a clock based on any transition i would satisfy

u <
δν

ν

∣∣∣∣
i
<

√
2u. (15)

It differs at most by a factor 
√

2 from optimality, and 
approaches optimality when a large number of uncorrelated 
frequency ratio measurements are available.

7.2. Partial frequency ratio matrix

We now assume that another transition with the same uncer-
tainty u is added to the pool of transitions, bringing the total 
number of transitions to n  +  1. However, the connection of 
this new transition is not complete, i.e there is no direct mea-
surement of the frequency ratios between the additional trans-
ition and some of the initial n transitions. To account for this, 
we may choose a different weight for the additional transition, 
say wn+1 = ηwk, 1 � k � n. The addition of a partially con-
nected transition to the initial pool of fully connected trans-
ition may result in an unwanted deviation from optimality in 
the realisation of the unit with the initial transitions, that we 
aim at quantifying.

The computation of the uncertainty δNi/Ni is reported in 
appendix A. For completely correlated frequency ratio meas-
urements, the addition of the new transition has the same 
effect as adding a fully connected transition, that is to say a 
marginal added uncertainty. For uncorrelated frequency ratio 
measurements, the uncertainty is plotted in figure 2 as a func-
tion of η and n. It shows that for a pool of several transitions, 
the uncertainty of the realisation of the unit is not significantly 
altered by adding a partially connected transition to the unit, 
and that the degradation can be mitigated by setting a lower 
weight η to the added transition. This allows to integrate the 
newly added transition into the unit, with an uncertainty on 
the realisation of the unit by this transition that is a decreasing 
function of η and of the number of measured frequency ratios 
with the initial transitions.

Figure 2. A transition n  +  1 is added to a pool of n initial 
transitions. The frequency ratios between this new transition and 
the initial transitions is only available for a single initial transition, 
the ‘connected transition’. This figure shows the uncertainty of the 
realisation of the frequency unit for the connected transition (thin 
lines) and unconnected transitions (thick lines), as a function of the 
weight wn+1 of the newly introduced transition, from 0 (the unit 
does not incorporate the new transition) to w1,n (the new transition 
has the same weight as the initial transitions). The measured 
frequency ratios are assumed to be uncorrelated.

Metrologia 56 (2019) 055009
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7.3. Two different clock transitions

We now consider the case in which the unit is composed of 
two clock transitions 1 and 2. We note η = u2/u1. The realisa-
tion of the frequency unit with a clock based on transition 1 
reads:

δν

ν

∣∣∣∣
1
=

√
1 + w2

2(1 + η2) u1. (16)

We now have to decide on the weight to attribute to each clock 
transition. A first choice would be to set w1 = ηw2. However, 
this choice is such that the uncertainty on the realisation of 
the frequency unit with a clock based on transition 1 given 
by equation (16) is minimal for η = 1, at 

√
3/2 u1, and then 

increases to 
√

2 u1 for η going to infinity. This situation is not 
suitable, as adding a clock transition with a large uncertainty 
would degrade the ability to realise the frequency unit with 
a low uncertainty clock. To remedy this problem, one can 
choose w1 = ηlw2 with l  >  1. In such a case, δν/ν|1 goes to 
u1 for η � 1 and to 

√
2 u1 for η � 1. Now, the uncertainty of 

the realisation of the unit with the best clock is only limited 
by the uncertainty of this clock, while realising the unit with 
the worse clock is 

√
2 the clock uncertainty (one uncertainty 

to for the connection to the unit i.e. measuring the frequency 
ratio, one uncertainty for the realisation). These results are 
represented in figure 3.

8. Evolution

In the previous section, we showed that the weight of each 
transition in the definition of the unit should be adapted to 
the uncertainty of this transition. As the performances of the 
clocks improve, and as new transitions are evaluated, we may 
consider altering the weighting coefficients wi. In doing so, 
the unit must be backward compatible. For this, an updated 
value of the normalisation constant N must be calculated from 
the evolution of the weights and the transitive frequency ratio 
matrix ρ̄  available from measurements.

We denote with a superscript (m) the value of the defining 
constants N and wk at the mth evolution of the unit. Equating 

the realisation of the unit for an arbitrary transition i, given by 
equation (12), before and after the change yields:

N(m+1) = N(m)

∏
k∈C ρ̄

w(m)
k

ik
∏

k∈C ρ̄
w(m+1)

k
ik

. (17)

Using the transitivity property of the matrix ρ̄ , it is straightfor-
ward to check that N(m+1) does not depend on the choice of i.

Because the values of the measured frequency ratios ρ̄  
contain statistical noise, equation (17) can be interpreted as a 
random walk of the logarithm of N. As such, the unit may drift 
away from a previous definition more than the uncertainty of 
its realisations. However, according to Kolmogorov’s three-
series theorem, the random walk converges if the series

∞∑
m=0

vm with vm =
∑
k∈C

[
u(m+1)

k

(
w(m+1)

k − w(m)
k

)]2

 (18)
converges over m. This condition is easily met if the unit is 
updated when the terms vm go to zero faster than 1/m, and a 
fortiori if they improve by a fixed factor between each update 
of the unit. The expression of vm in equation (18) is valid for 
a complete set of fully correlated frequency ratio measure-
ments, but equation (A.5) can be used to compute vm for any 
given covariance matrix resulting from the fit of a set of fre-
quency ratio measurements.

In order to illustrate the convergence of the unit, we con-
duct a numerical simulation of its evolution. For this, we fix 
exact frequency ratios. At each evolution step m, we draw 
random frequency ratios ρm  that deviate from the exact ratios 
by the uncertainty set for each transition at step m. From these 
ratios, we estimate the most probable transitive frequency 
ratio matrix ρ̄  with a least square method. We then use this 
ratio matrix to update the normalisation constant of the unit 
N according to equation (17). Equipped with the knowledge 
of the exact frequency ratios that our simulation provides us 
with, we then calculate the frequency of the unit and the acc-
uracy of its realisation with clocks based on each transition 
using equations (11) and (12) respectively.

In a first simulation, we keep the transition uncertainties 
constant, but the weight of each transition is randomly redis-
tributed at each update. This simulation shows the expected 
random walk behavior of the unit as the series (18) does not 
converge. In a second simulation, we show the convergence 
of the unit when the transition uncertainties are randomly 
improved at each update of the unit (figure 4).

9. From a single primary frequency standard to 
multiple clock transitions

Let us consider the special case for which wi0 = 1 for a spe-
cific clock transition i0, and wi  =  0 for all other transitions. In 
this case, the Ni factors reduce to

Ni0 = N and Ni = Nρ̄ii0 for i �= i0, (19)

such that the frequency unit can be directly realised with a 
clock based on the transition i0 without additional uncertainty 

Figure 3. Frequency unit defined from a set of two transitions. 
The graph shows the relative uncertainty with which the unit can 
be realised with a clock based on transition 1, in units of u1, as 
a function of η = u2/u1. The various curves represent different 
weighting functions w1 = ηlw2.
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beside the uncertainty of the clock, while it can be realised 
with clocks based on other transitions with the added uncer-
tainty on the frequency ratio ρii0. This situation is precisely 
the current situation, in which we have a primary frequency 
standard (PFS) i0 with which the frequency unit is defined 
by ν = νi0/Ni0 = νi0/N  exactly, and secondary representa-
tions of the second (SRS) whose recommended frequency is 
νSRS

i = Niν = Nρ̄ii0ν . In that view, the unit proposed in this 
paper is not an alternative to the current definition of the 
SI second with a single PFS and a set of SRS, but rather a 
generalisation thereof. This distinction has two important 
consequences.

First, if at some point in the future, a specific clock trans-
ition i0 stands out with realisations significantly more accu-
rate than the realisations of other transitions, the unit will 
evolve, according to the procedure described in the previous 
section, to the weights wi = δi,i0. The unit would thus effec-
tively fall back to a definition based on a single PFS, while the 
other trans itions would acquire the status of the current SRS. 
However, this situation is reversible, should the other trans-
itions catch up with the transition i0.

Second, all the algorithms or procedures already in place 
designed to make use of data produced by primary and sec-
ondary standards can be readily adapted to the unit proposed 
here, by replacing the recommended frequency νSRS = NSIρ̄i,Cs 
and its uncertainty for SRS by Ni and its uncertainty for all 
transitions. A notable example is the steering of TAI (Temps 
Atomique International) by contributing atomic clocks. While 
TAI was historically steered by the 133Cs primary standards, 
contributions from 87Rb, and more recently from optical 
clocks (based on neutral 87Sr and 171Yb) are now incorporated 
in TAI, using the recommended frequency for these SRS, and 
adding its uncertainty to the clock uncertainty [11, 12]. With 
the new unit proposed in this paper, all contributing clocks 
would be steering as SRS are steering now. Namely, one 
would produce the frequency unit by scaling the frequency 
of a clock based on the atomic transition i by the factor 1/Ni, 
as expressed by equation (12), and use it to calibrate the fre-
quency of the local oscillator used as a pivot to connect to TAI. 
The relative uncertainty on Ni would be used to fill the uSrep 
entry of the circular T. With the definition of the time unit pro-
posed here, TAI would thus remain a truly atomic time, in the 
sense that all atomic transitions would contribute to TAI on an 
equal footing, with an added uncertainty δNi/Ni expressing 
how well the transition is connected to the unit.

10. Practical realisation

The practical definition of the unit requires a designated 
body in charge of deciding of the list of clock transitions 
contributing to the unit and their respective weights. The 
Frequency Standards Working Group (WGFS) of the CCL 
(comité consultatif des longueurs)—CCTF has defined a set 
of requirements and guidelines for the inclusion of trans itions 
and frequency ratio measurements to obtain the list of rec-
ommended frequencies, the best of which being promoted 
to SRS [7]. It takes into account published frequency ratio 

measurements and sets an uncertainty for these ratios that 
depends on the published uncertainty, but also on the level of 
confidence provided by the repeatability of the measurements 
by different laboratories, and possible correlations between 
the frequency ratios. These conservative guidelines ensure 
that the set of SRS is not affected by possible outliers.

This very procedure can be used as is to set the weight of 
each transition that compose the unit proposed in this paper, 
and therefore to set the definition of the unit. In addition to 
setting the definition itself, the working group could recom-
mend values for the quantities Ni and their uncertainty δNi 
required to realise the frequency unit with a clock based on 
transition i. The former can already be computed from the 
published values of the recommended frequencies for SRS, 
while the latter can be deduced from the covariance matrix 
of the adjusted frequency ratios, a by-product of the fitting 
procedure. Using these numerical constants, any laboratory 
equipped with a clock based on one of the transitions com-
posing the unit would be able to realise it.

The shift to the unit proposed in this paper would thus 
comprise the following steps:

 (i)  The definition of the SI second is changed to:

The second, symbol s, is the SI unit of time. It is 
defined by taking the fixed numerical value of the 
weighted geometric mean of the frequencies of a 
set of atomic clocks transitions, to be a constant N 
when expressed in the unit Hz, which is equal to s−1. 
The weights and the constant N are published by 
the CIPM and updated according to frequency ratio 
measurements, in order that the unit converges.

 (ii)  At each meeting of the CCTF, a transitive list of recom-
mended frequency ratios and their covariance matrix is 
published, along with the associated Ni factors and their 
uncertainties. These quantities are derived from a fit of 
all published frequency ratio measurements [8, 9]. As it 
is currently done for the recommended frequencies of 
SRS, additional safeguards can be applied in order to 
prevent outliers, such a requiring that frequency ratios 
should be directly or indirectly measured by at least two 
independent sets of clocks, or adding a margin to the 
published uncertainties.

 (iii)  At each meeting of the CCTF, the possibility to update the 
weights of the clock transitions is evaluated. It could for 
instance be decided each time the quantity vm is reduced 
by a constant factor, such as two. This results in an expo-
nential decay of the vm terms with m, thus ensuring the 
rapid convergence of their series. Such an update would 
notably occur at the first meeting, so that the weights and 
the normalisation constant would depart from their cur-
rent value wi = δi,Cs and N = 9192 631 770.

The unit proposed in this paper is particularly relevant when 
a large number of frequency ratios between optical clock 
transitions have been measured, hence bringing it closer to 
optimality. The availability of such frequency ratios is now 
becoming a reality with optical clocks being compared 
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Figure 4. Simulation of the evolution of the frequency unit, starting with an initial configuration (m  =  0) in which a single transition 
with an uncertainty u1 = 2 × 10−16 contributes to the unit, i.e reproducing the current SI second. At the first evolution step (m  =  1), we 
start incorporating another microwave clock transition (labeled 2) and three optical clock transitions (labeled 3–5) to the unit. Each clock 
transition contributes to the unit with a weight wi ∝ 1/u2

i . We model a possible stochastic evolution of the transitions’ uncertainty with only 
marginal improvement for the microwave transitions, and different rates of improvement for the three optical transitions. Bottom right: 
example trajectories of the unit, with respect to its initial definition, corresponding to different measurements of frequency ratios. At m  =  1, 
the unit experiences a step after the introduction of the new transitions. However, this step lies withing the uncertainty of the first transition 
initially defining the unit. After this first step, the unit converges fast to an asymptotic value, noted ν(∞) and represented for a specific 
highlighted trajectory. The mains graphs show statistics over a large number of trajectories, for three different configurations in which 
all the frequency ratios between all transitions have been measured. For (a) the measurements are independent and limited by statistical 
noise; for (b) and (c) the measurements are maximally correlated (i.e. limited by common systematic effects, or simultaneous); for (c), a 
sixth clock transition (labeled 6) with a radically improved uncertainty is introduced after step m  =  7. For all graphs, the thin lines show 
the transition uncertainties ui chosen for the simulation. The thick lines show the relative standard deviation in the realisation of the unit 
with a clock based on transition i, i.e δν/ν|i, matching its analytical expression given by equation (14). The colored area between the thin 
and thick line thus represents the overhead due to the non-optimality of the unit. For the initial configuration m  =  0, this area is null for the 
unique primary frequency standard (PFS, i  =  1) defining the unit, and large for the other transitions acting as SRS. In case (b) and (c), even 
though the uncertainty of the SRS is better than the uncertainty of the PFS, the former can only realise the unit with an uncertainty limited 
by the accuracy of the latter, as one can expect. However, in case (a) the statistical independence between the frequency ratio measurements 
enables a better realisation of the unit with SRS. As soon as more transitions are introduced (m  >  0), the thickness of the area is small 
compared to the respective transition uncertainty, meaning that it is possible to realise the unit with a clock based on any transition with an 
uncertainty very close to the nominal uncertainty of the clock. For (c), the newly added transition with a much better uncertainty becomes 
de facto the new PFS, and the overhead in realising the unit with the other clock transitions increases. The thick purple line shows the 
relative standard deviation of the unit with respect to its asymptotic value output from the simulation; it matches its analytical expression (∑∞

m′=m vm′
)

1/2 where vm′ is given by equation (A.5). In the correlated cases (b) and (c), vm′ reduces to the expression of equation (18). 

From this equation, we expect that if the weights wi smoothly evolve, i.e. |w(m+1)
k − w(m)

k | � 1, the change in the unit can be significantly 
lower than the uncertainties of the transitions ui. This effectively appears in the simulations (a) and (b). In (c) however, the abrupt change 
in the weights due to the sudden introduction of the additional transition brings the change in the unit closer to the uncertainty of the 
transitions.
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through optical fiber links, such that changing the definition of 
the unit could be foreseen in the next few years. Yet, in order 
to illustrate the evolution process of the unit, the appendix 
B shows how the unit would be now defined if it had been 
adopted before the 2015 meeting of the CCTF at which a few 
optical-to-optical frequency ratios were considered for the 
determination of the recommended frequencies of SRS.

The evolution step (iii) makes that the effective definition 
of the unit is regularly updated, by adopting new weights. One 
could thus argue that, through this process, the unit is con-
stantly changing, making it indecisive. However, in essence, 
the unit is not changing: it keeps being the value v(∞) whose 
existence is ensured by the convergence criterion that must 
be met, and each evolution step brings us closer to begin able 
to realise it, as illustrated by example trajectories of the unit 
shown on figure 4. Admittedly, v(∞) is accidental because it 
depends on the outcome of the frequency ratio measurements 
that drive the evolution of the unit. However, it is the case for 
all base units of the SI: the chosen values of fundamental con-
stants are experimental accidents, but become defining once 
fixed.

11. Are we fixing frequency ratios?

The new SI adopted by the 26th CGPM emphasizes on the 
essence of fixing physical constants to define base units. For 
instance, the meter is defined by fixing the speed of light, the 
kilogram by fixing the Planck constant,…. In this new SI, the 
wording of the definition of the SI second has been altered in 
order to make explicit that the unit of time is defined by fixing 
the frequency of the Cs ground state hfs to NSI, as reported 
in the introduction. Therefore, the question arises of which 
physical constant is fixed in the frequency unit proposed in 
this paper. One would be tempted to answer that frequency 
ratios are fixed because agreed-upon values of these ratios are 
necessary in order to realise the unit using equation (12). Such 
a statement would be contradictory, because these frequency 
ratios are dimension-less, measurable quantities imposed to us 
by Nature, that we are thus not allowed to arbitrarily fix.

Indeed, it is crucial to notice that the definition itself, given 
by equation (11) does not rely of the availability nor on the 
value of these ratios, but only on the arbitrarily fixable con-
stants N and wi. Only the realisation of the unit requires the 
knowledge of the frequency ratios. But it is already the case 
that measurable physical quantities are required in order to 
realise the SI second. For instance, the polarisability of the 
Cs atom is required to correct for the black-body radiation 
shift, the quadratic Zeeman shift coefficient is required to 
cancel this effect, the interaction strength between Cs atoms 
is required to compensate for collisional effects, … Without 
prior measurements of these measurable physical quanti-
ties, it would not be possible to realise the SI second with Cs 
clocks. But the value of the Cs polarisability itself, although 
required by the definition, is not stated nor mentioned in the 
definition of the SI second, which is above such mundanes. In 

the same spirit, the prior knowledge of measurable frequency 
ratios is required to realise the unit proposed in this paper, 
but they are not part of the definition, and a fortiori not fixed 
by the definition. However, the availability, the uncertainty 
or the reproducibility of frequency ratios connecting a spe-
cific atomic transition to the pool of transitions already used 
to define the unit may influence the decision to incorporate 
or not this atomic transition to the pool. This requirement is 
aligned with the roadmap for the redefinition of the SI second 
[7], which already requires that a large number of frequency 
ratios are measured and reproduced with a low uncertainty 
before a redefinition of the SI second can be agreed upon.

Unlike the other base units of the SI that are defined by 
directly fixing fundamental constants such as c, h, e, kB, NA, 
the Cs-based definition of the SI second only indirectly fixes 
a fundamental constant. Indeed, one can write the frequency 
of the Cs clock transition as the product of a constant with 
the dimension of a frequency, e.g. the Rydberg constant cR∞, 
and a dimension-less function FCs of dimension-less physical 
constants that characterize the scale of the various physical 
interactions at stake in the Cs atom, such as the fine structure 
constant α, the electron to proton mass ratio me/mp, …:

νSI =
νCs

NSI
=

1
NSI

cR∞ FCs(α, me/mp, . . .). (20)

Fixing the frequency of the Cs clock transition therefore 
amounts to fixing R∞ to the value νSINSI/cFCs, which is 
unknown because FCs is not exactly calculable, and its con-
stant parameters only known with a finite uncertainty. While 
it would be conceptually more satisfying to fix a fundamental 
constant such as cR∞ to define the SI second, the choice of 
fixing the frequency of the Cs clock transition is driven by the 
practical availability of clocks able to realise the unit with the 
best accuracy.

This situation remains unchanged with the unit proposed in 
this paper, because, even though it fixes several constants (N 
and wi) instead of a single one (∆νCs), the frequency unit can 
still be expressed in the form

ν =
1
N

∏
i∈C

νwi
i =

1
N

cR∞ F(α, me/mp, . . .). (21)

The function F  simply becomes a combination of the dif-
ferent functions Fi :

F =
∏
i∈C

Fwi
i (22)

and thus remains unknown as well. However, this expression 
offers new possibilities. If the fundamental constants such as 
α are eventually found to drift with time [13], one could envi-
sion to constraint the choice of the weights wi such that F  
is insensitive to variations of the fundamental constants. For 
instance, the Yb+ E3 transition has a large negative depend-
ence on α variations [13] that can be compensated for by the 
positive dependence of Sr, Yb, Al+ , Hg, at the expense of a 
reduced weight for the Yb+ E3 transition.
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12. Summary and conclusion

In summary, we showed that a frequency unit ν  can be defined 
as the weighted geometric mean of the frequencies of a set C 
of clock transitions:

ν =
1
N

∏
i∈C

νwi
i . (23)

The normalisation constant N and the weights wi are defining 
constants for the unit. The choice of the latter is driven by the 
relative uncertainty ui of the transition with wi ∝ 1/u2

i . The 
former is set in order to ensure the continuity with a previous 
definition of the unit. Such a unit is realisable with a single 
clock using a frequency ratio matrix satisfying the transitivity 
property (1), obtained from an adjustment of a connex but pos-
sibly incomplete set of experimentally determined frequency 
ratios between the transitions. The accuracy of the realisation 
is smaller than 

√
2u where u is the uncertainty of the clock 

used for the realisation, and goes to u for the best clocks of the 
pool when the size of the pool grows.

The backward compatible evolution of the definition of 
the second makes that technical evolution in the frequency 
standards do not change the essence of the definition of the 
frequency unit, but only the defining constants, in a way that 
only improves the uncertainty of the realisation, without intro-
ducing a drift of the unit.

Laboratories already equipped with high performance 
optical clocks will not be incited to reorient their research 
activities to implement a clock based on an arbitrarily chosen 
definition based on a single atomic species, thus avoiding that 
this atomic species becomes over-represented in metrology 
laboratories. On the contrary, defining the SI second with the 
unit proposed here would encourage laboratories to develop 
pairs of clocks never demonstrated before in order to improve 
the optimality of the unit. By doing so, the optical frequency 
community would preserve the diversity of atomic transitions 
currently being investigated, their enhanced potential, and 
their numerous applications in tests of fundamental physics.

Beyond this community, the SI is a field of physics appre-
hensible to the general public. It is therefore important that 
the choice of unit can be easily explained with a simple 
wording. This necessity became recently manifest, with the 
introduction of the new SI for which it is challenging to intui-
tively explain the relation between the Planck constant and 
the kilogram. Likewise, some aspects of the unit proposed in 
this paper rely on more abstract mathematical reasoning than 
the current definition solely based on the physical probing of 
Cs atoms. However, the complexity mainly lies in the proofs 
of correctness of the unit (optimality and convergence). The 
basic principle, on the other hand, is more accessible: in order 
to avoid an arbitrary and ephemeral choice among many pos-
sible candidates, the second is defined as the average fre-
quency of the best realised atomic clocks transitions at any 
time, with evidence that the unit remains consistent over 
time. Such an explanation is arguably understandable while 
remaining correct.
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Appendix A. Least square adjustment of frequency 
ratios

We consider a set {ρm
k , 1 � k � r} of measured frequency 

ratios between the frequencies of different clock transitions. 
Because of statistical and systematic uncertainty in the mea-
surements, these ratios deviate from the actual frequency 
ratios ρ , and do not fulfill the transitivity property (1). It is 
possible to derive a most likely transitive frequency ratio 
matrix ρ̄  from these measurements using a least squares pro-
cedure, as detailed in [8]. For this, one has to minimize the 
squared sum of the residuals

χ2 = ∆TW−1∆, (A.1)

where ∆ is the vector of size r  gathering the differences 
ρm

k − ρ̄k  between the measured and most likely ratios, and W 
is the r × r  covariance matrix of the measured ratios. Because 
of the transitivity relations linking the coefficients of ρ̄ , the 
fitting procedure only involves n  −  1 free parameters, n being 
the number of different clock transitions under consider-
ation. A convenient choice is to arbitrarily set the frequency 
of a given clock transition i0 to ν̄i0 = 1, and to express the 
frequency ratios ρ̄k as a function of the frequencies ν̄i of the 
n  −  1 other transitions.

This procedure yields the most likely values for the ν̄j, either 
with a linear least squares algorithm (using a linearisation of 
the frequencies ν̄j around an a priori guess) [8] or with a non-
linear least squares algorithm (using the Jacobian of the system 
Jkl = ∂∆k/∂ν̄l). The outcome is the best estimate for the fre-
quency ratio matrix ρ̄ij = ν̄i/ν̄j , as well as the covariance matrix

Σij = 2
(

∂2χ2

∂ν̄i∂ν̄j

)−1

. (A.2)

This is a square matrix with size n  −  1, but in order to sim-
plify the notations hereafter, we consider additional row and 
column at position i0 with 0 components, giving a row and a 
column per clock transition. From this covariance matrix, on 
can deduce the uncertainty on the frequency ratios:

δρ̄ij

ρ̄ij
=

√
Σii

ν̄2
i
+

Σjj

ν̄2
j
− 2

Σij

ν̄iν̄j
. (A.3)

To calculate the uncertainty on the geometric mean 
Ni = N

∏
k ρ̄

wk
ik , it is convenient to choose the fixed frequency 

i0  =  i. In this case:

δNi

Ni
=

√√√√
n∑

j,l=1

wjwl
Σjl

ν̄jν̄l
for i = i0. (A.4)
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Similarly,

vm =

n∑
j,l=1

(
w(m+1)

j − w(m)
j

)(
w(m+1)

l − w(m)
l

) Σjl

ν̄jν̄l
. (A.5)

Although some steps in the calculation of δρ̄ij/ρ̄ij and δNi/Ni 
depend on i0, these quantities themselves are eventually inde-
pendent of i0.

We now make explicit these uncertainties in a few specific 
cases

A.1. Uncorrelated complete set of measured ratios

We first assume that the measured frequency ratios form a 
complete matrix (i.e. all possible frequency ratios between 
the n atomic species have been measured), and that all 
measurements are uncorrelated (i.e. the measurement are 
independent, and limited by the statistical uncertainty or 
by systematic effects that are not in common mode between 
different measurements). In this very favourable case, there 
is an averaging effect between the measurements that pro-
duce a most-likely frequency ratio matrix ρ̄  with an uncer-
tainty lower than the individual uncertainty of the clocks. 
Explicitly, the input covariance matrix is diagonal and 
reads:

Wkk = δρ2
ij = ρ2

ij

(
u2

i + u2
j

)
, (A.6)

where i and j  are the indexes of the two transitions involved 
in the frequency ratio measurement k, and ul is the relative 
uncertainty of transition l. Using the formulas above, one can 
then express the relative uncertainty on the most likely fre-
quency ratios as a function of the individual transition fre-
quencies. For instance, with a set C of n  =  3 clock transitions, 
this uncertainty reads:

δρ̄ij =

√
1 −

u2
i + u2

j

2
∑

k∈C u2
k
δρij for n = 3. (A.7)

This equation  shows that the uncertainty δρ̄ij on the most 
likely frequency ratio ρ̄ij  is smaller than the uncertainty δρij 
on the measured frequency ratio, by exploiting the redundant 
information in the uncorrelated frequency ratio matrix. For a 
set of n transitions with the same uncertainty u, we have:

δρ̄ij

ρ̄ij
=

2√
n

u, (A.8)

and

δNi

Ni
=

√
2(n − 1)

n
u. (A.9)

The 1/
√

n behaviour of these uncertainties also illustrates the 
averaging effect.

A.2. Fully correlated complete set of measured ratios

We now make the opposite assumption: all possible frequency 
ratios between the various clock transitions are measured, 
but all these measurement are performed with the same set 
of clocks, at the same time. This means that statistic and sys-
tematic uncertainties are fully correlated. The diagonal terms 
of the covariance matrix W are unchanged, but it now features 
off-diagonal terms.

For n transitions with the same uncertainty u, this yields

δρ̄ij

ρ̄ij
=

√
2u, (A.10)

and

δNi

Ni
=

√
1 − 1

n
u. (A.11)

The uncertainty on all frequency ratios is limited by the trans-
ition uncertainties, and the relative uncertainty on Ni is at 
most the transition uncertainty u.

A.3. Incomplete set of measured ratios

We now detail the situation considered in section 7.2. The com-
plete frequency ratios are measured for a set of n trans itions, 
and a transition n  +  1, with the same uncertainty u as the ini-
tial transitions is added to the pool of transitions, but only a 
limited number nc  <  n of frequency ratios involving this last 
transition have been measured. We define η = wn+1/w1..n the 
relative weight of the additional transition in the definition of 
the frequency unit. With these assumptions, the additional rel-
ative uncertainty of the realisation of the frequency unit reads:

For uncorrelated measured frequency ratios:

δNi

Ni
=

√
2

n + η

√
(n + nc)η2 + n(nc − 1)(2η − 1)

nc(n + 1)
+ n − 1 for 1 � i � nc

 (A.12)

δNi

Ni
=

√
2

n + η

√
n + nc + 1

n nc
η2 + 2η + n − 1 for nc < i � n

 (A.13)

δNn+1

Nn+1
=

√
2

n + η

√
n2 + n − nc

nc
. (A.14)

For correlated measured frequency ratios:

δNi

Ni
=

√
2η2 + 2(n − 1)η + n(n − 1)

n + η
for 1 � i � n

 (A.15)

δNn+1

Nn+1
=

√
n(n + 1)
n + η

. (A.16)
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Appendix B. Defining the unit with the current fre-
quency ratio measurements

Table B1. Proposition for the weights of the various transitions 
composing the unit, using the list of frequency ratio  
measurements published before 2015 (left) and 2017 (right), 
when the 20th and 21st meetings of the CCTF were held. We 
calculate 

√
v2015 = 1.7 × 10−16 at the first update of the unit, and √

v2017 = 3.5 × 10−17. The significant reduction of v in 2017 
with respect to 2015 justifies a new update of the unit, enabled by 
the inclusion of new optical frequency ratio measurements. The 
normalisation constant is set to N = 203 102 222 210 226.561 in 
2015, and to N = 152 329 318 467 266.642 in 2017, in order to 
ensure continuity with the previous Cs based definition of the unit.

2015

Species wi Ni δNi/Ni

133Cs 0.089 9192 631 770 1.7 × 10−16

171Yb 0.005 518 295 836 590 865.105 9.4 × 10−16

171Yb+ (E2) 0.071 642 121 496 772 645.04 2.7 × 10−16

171Yb+ (E3) 0.063 688 358 979 309 308.379 8.6 × 10−17

199Hg 0.362 1128 575 290 808 154.79 8.6 × 10−16

199Hg+ 0.010 1064 721 609 899 145.3 6.6 × 10−16

27Al+ 0.011 1121 015 393 207 857.31 6.4 × 10−16

87Rb 0.020 6834 682 610.904 307 4.7 × 10−16

87Sr 0.368 429 228 004 229 873.166 7.4 × 10−17

2017

Species wi Ni δNi/Ni

133Cs 0.081 9192 631 770.000 002 13 9.5 × 10−17

171Yb 0.327 518 295 836 590 863.762 3.8 × 10−17

171Yb+ (E2) 0.016 642 121 496 772 645.189 2.6 × 10−16

171Yb+ (E3) 0.015 688 358 979 309 308.539 2.9 × 10−16

199Hg 0.166 1128 575 290 808 154.68 6.4 × 10−17

199Hg+ 0.002 1064 721 609 899 145.55 6.5 × 10−16

27Al+ 0.003 1121 015 393 207 857.57 6.3 × 10−16

87Rb 0.037 6834 682 610.904 314 18 1.6 × 10−16

87Sr 0.353 429 228 004 229 873.134 2.7 × 10−17

The BIPM website publishes the list of measured frequency 
ratios that is currently being used as the input of the least-
squares algorithm [8] used to determine the recommended 
frequency of the SRS. This list can be used as a playground 
to simulate the unit proposed in this paper, as if it had already 
been adopted. From the list of frequency ratios published 
before a given date, we determine the transitive set of most 
probable frequency ratios ρ̄ij  and their covariance matrix Σij .

In order to define the unit one has to choose the weights 
wi. In this paper, we prescribed to chose weights propor-
tional to 1/u2

i  where ui is the uncertainty of the clocks real-
ising the trans ition i. However, in practice, frequency ratios 
can be measured by different clocks using the transition i 
with varying statistical and systematic uncertainties, possibly 
larger than the best uncertainty reported for transition i. ui is 
therefore ill-defined. Instead, the relevant uncertainty can be 

found in the values of δρ̄ij as given by the fit procedure, which 
represents how the clock transition i is connected to other 
transitions by actual frequency ratio measurements. Here, we 
heuristically choose wi to be proportional to the average of the 
two largest values of 1/δρ̄2

ij over j . This makes wi representa-
tive of the uncertainty of the best frequency ratio measure-
ments with transition i, while avoiding that a single frequency 
ratio would exclusively steer the unit. One could alternatively 
choose the weights of the clocks with a specific optim isation 
procedure in order to e.g. minimize the sub-optimality of the 
best trans itions. All in all, these possible choices become 
similar as more frequency ratios between optical transitions 
are measured with state-of-the-art clocks; and any of these 
choices is definitely better than setting the full weight of the 
unit on a single atomic transition in the current and forseable 
context where many different optical clocks are developed.

From the weights wi and the covariance matrix Σij , one can 
calculate the factors Ni and their uncertainties, as well as vm 
and decide whether the unit should be updated or not. If so, the 
new normalisation constant N is calculated. Table B1 reports 
on the outcome of such a procedure using the frequency ratio 
measurements published prior to 2015 and 2017.
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